BC1425 (1q’13)

Esta é a página sobre a disciplina BC1425 – “Álgebra Linear”, ministrada no primeiro quadrimestre de 2013 para a turma B – Noturno (campus Santo André). Aqui encontram-se informações gerais sobre o curso.

Novidades:

Notícias recentes sobre o funcionamento do curso serão disponibilizadas aqui.

  • (24.7.13) Conceitos finais.
  • (6.7.13) As notas da P2 estão disponíveis, com cálculo preliminar da média Mp das duas provas (i.e. sem levar em consideração a Sub).
  • (6.7.13) A prova substitutiva no dia 10.7 (quarta-feira) será aplicada e corrigida pelo Prof. Daniel Miranda.
  • (3.7.13) O gabarito da Lista 7 foi revisado.
  • (1.7.13) O gabarito da Lista 5 foi revisado.
  • (30.6.13) A Lista 6 foi revisada e conta agora com gabarito parcial.
  • (30.6.13) A Lista 5 foi revisada e conta agora com gabarito parcial.
  • (30.6.13) A Lista 7 (com gabarito parcial) está disponível. Os gabaritos parciais das Listas 5 e 6 serão disponibilizados em breve.
  • (26.6.13) A data de entrega das listas restantes (a serem especificadas em breve) foi adiada para sexta-feira, 5.7.
  • (24.6.13) A Lista 6 está disponível.
  • (21.6.13) Em virtude da decisão da Reitoria de suspender as atividades acadêmicas e administrativas no Campus Santo André hoje a partir das 15h30 devido à manifestação agendada às 17h00 no Paço Municipal de Santo André, a aula de hoje (21.6) às 21h00 foi cancelada.
  • (17.6.13) Critérios de conceito final em função da média Mp das provas: F (Mp < 4,0), D (Mp = 4,0-5,5), C (Mp = 5,6-7,0), B (Mp = 7,1-8,5), A (Mp = 8,6-10,0).
  • (12.6.13) A Lista 5 está disponível.
  • (12.6.13) Vista da P1: a partir de hoje (12.6), segundas-feiras, quartas-feiras e sextas-feiras, das 18h00 às 19h00, na minha sala (518-2, bloco A). Excepcionalmente, hoje (12.6) e na próxima sexta-feira (14.6) a vista só poderá ser feita das 18h30 às 19h00.
  • (12.6.13) As notas da P1 estão disponíveis.
  • (28.5.13) Nova atualização da Lista 4.
  • (27.5.13) A Lista 4 foi atualizada, e conta agora com gabarito parcial.
  • (24.5.13) A Lista 3 foi atualizada, e conta agora com gabarito parcial.
  • (23.5.13) Serão coletadas na aula de revisão para a P1, no dia 27.5 (segunda-feira), as Listas 1, 2 e 3. Entretanto, o conteúdo da P1 compreenderá essas Listas e também a Lista 4.
  • (17.5.13) A Lista 4 está disponível.
  • (16.5.13) A Lista 3 está disponível.
  • (3.5.13) As Listas 1 e 2 foram atualizadas, e contam agora com gabaritos parciais.
  • (3.5.13) Em virtude do início dos horários de monitoria, o plantão de dúvidas às segundas-feiras será desativado a partir do dia 13.5. O plantão às sextas-feiras permanece inalterado.
  • (3.5.13) A partir do dia 13.5, o horário do plantão via Skype nas segundas-feiras passará a ser das 14h15 às 15h45.
  • (3.5.13) O atendimento do monitor Raul da Cunha Costa será feito a partir do dia 7.5 (terça-feira) na sala 306-2 (Bloco A).
  • (2.5.13) O plantão via Skype do dia 6.5 (segunda-feira) foi cancelado.
  • (2.5.13) As aulas de revisão foram marcadas para os dias 27.5 (P1) e 1.7 (P2).
  • (2.5.13) Haverá plantões de monitoria ministrados pelo monitor Raul da Cunha Costa às terças-feiras e às quintas-feiras, das 16h às 19h. O início e o local dos plantões será comunicado em breve.
  • (2.5.13) As aulas dos dias 3.5 e 10.5 (sextas-feiras) terão lugar na sala 402 (Bloco B), enquanto que a aula do dia 8.5 (quarta-feira) terá lugar na sala 106-0 (Bloco A), devido aos preparativos e à ocorrência da I Semana das Engenharias da UFABC.
  • (2.5.13) Importante! Fui informado há pouco pela Prograd que o cancelamento das aulas da disciplina de Álgebra Linear para as turmas de Engenharias devido à I Semana das Engenharias da UFABC nos dias 6.5 (segunda-feira), 8.5 (quarta-feira) e 10.5 (sexta-feira) não ocorrerá. Para minimizar o prejuízo aos alunos que participarão do evento em virtude dessa mudança, comunico que a aula do dia 6.5 (segunda-feira) permanece cancelada, enquanto que haverá aulas de exercícios nos dias 8.5 (quarta-feira) e 10.5 (sexta-feira).
  • (29.4.13) A Lista 2 está disponível.
  • (29.4.13) Foram indicadas as seções nos livros-texto listados abaixo que correspondem aos tópicos listados no “Roteiro”.
  • (29.4.13) Lista 1 atualizada. Outras atualizações podem surgir no futuro e serão listadas aqui. Um gabarito parcial para a Lista 1 será disponibilizado em breve.
  • (29.4.13) O dia da P2 foi remarcado para 3.7 (quarta-feira). Haverá vista da P2 na aula do dia 5.7 (sexta-feira). A vista da P1 será feita hos horários de plantão de dúvidas nos dias após o término da correção.
  • (29.4.13) Não haverá plantão de dúvidas nos dias 6.5 (segunda-feira), 17.5 (sexta-feira) e 14.6 (sexta-feira).
  • (29.4.13) Horário de atendimento via Skype: segundas-feiras, das 15h às 16h30. Os interessados devem entrar em contato comigo via email com nome completo e RA no corpo da mensagem para obter o meu endereço Skype.
  • (29.4.13) Horário adicional de plantão de dúvidas: sextas-feiras, das 17h às 18h30.
  • (25.4.13) As datas das provas foram marcadas para 29.5 (P1), 5.7 (P2) e 10.7 (Sub).
  • (25.4.13) Devido à I Semana das Engenharias da UFABC, não haverá aula nos dias 6.5 (segunda-feira), 8.5 (quarta-feira) e 10.5 (sexta-feira).
  • (23.4.13) A Lista 1 está disponível.

Bibliografia:

A lista abaixo indica os textos que seguiremos mais de perto.

  • Tom M. Apostol, Cálculo, Volume 2 (segunda edição). Editorial Reverté, 1996 (original em inglês: Calculus, Volume II – Second Edition. Wiley, 1969);
  • Howard Anton, Chris Rorres, Álgebra Linear com Aplicações (oitava edição). Bookman, 2001 (original em inglês: Linear Algebra with Applications – 9th Edition. Wiley, 2005).

Recomendações e material didático suplementar:

É recomendado que o aluno tenha cursado anteriormente a disciplina BC0404 – “Geometria Analítica”.

A lista abaixo indica textos suplementares que podem ser de utilidade para o aluno.

  • Notas de aula do Prof. Jerônimo C. Pellegrini (atualizadas periodicamente);
  • Elon L. Lima, Álgebra Linear (sexta edição). IMPA, 2003;
  • Flávio U. Coelho, Mary L. Lourenço, Um Curso de Álgebra Linear. Edusp, 2001;
  • José L. Boldrini, Sueli L. R. Costa, Vera L. Figueiredo, Henry G. Wetzler, Álgebra Linear (terceira edição). Editora Harbra, 1986;
  • Alexei I. Kostrykin, Yuri I. Manin, Linear Algebra and Geometry. Gordon and Breach, 1997.

Avaliação:

  • Conceito final = no mínimo 90% a média simples de duas provas + no máximo 10% listas de exercícios;
  • Haverá uma prova substitutiva no final do curso, cujo conteúdo compreenderá toda a matéria;
  • Datas das provas: 29.5 (P1), 3.7 (P2) e 10.7 (Sub).

Listas de exercícios:

As listas de exercícios serão disponibilizadas gradativamente aqui. Ocasionalmente pode haver atualizações nas listas – recomenda-se aos alunos que verifiquem “Novidades” acima periodicamente para anúncios de atualizações.

As listas compreendendo o conteúdo de cada prova serão coletadas na aula de revisão que precede a prova. As listas não serão corrigidas, exceto se necessário em casos limítrofes de conceito final para aprovação.

Aulas de revisão: 27.5 (P1) e 1.7 (P2).

Monitoria e horário de dúvidas:

Horário de monitoria: terças-feiras e quintas-feiras, das 16h às 19h, na sala 306-2 (Bloco A), com o monitor Raul da Cunha Costa (a partir de 6.5).

Haverá plantão de dúvidas ministrado por mim às sextas-feiras, das 17h às 18h30, na minha sala (518-2, Bloco A, campus Santo André).

Horário de atendimento via Skype: segundas-feiras, das 14h15 às 15h45. Os interessados devem entrar em contato comigo via email com nome completo e RA no corpo da mensagem para obter o meu endereço Skype.

Roteiro:

Aqui indicamos brevemente a ordem de tópicos a ser seguida, com indicações das seções correspondentes em alguns dos livros-texto listados acima. Notar que essas seções podem ocasionalmente conter mais material do que será visto em aula – um guia mais preciso do conteúdo é dado pelos exercícios das listas (e, é claro, pelo material apresentado em aula 😉 ).

  • Espaços vetoriais: definição e exemplos (Anton-Rorres: seção 5.1; Apostol: seções 1.1 a 1.5; notas do Pellegrini: seção 1.4).
  • Subespaços vetoriais (Anton-Rorres: seção 5.2; Apostol: seção 1.6; notas do Pellegrini: seção 1.5).
  • Combinações lineares, (in)dependência linear (Anton-Rorres: seções 5.2 e 5.3; Apostol: seções 1.6 e 1.7; notas do Pellegrini: seção 2.1).
  • Bases de um espaço vetorial, dimensão, mudança de base (Anton-Rorres: seção 5.4; Apostol: seções 1.8 a 1.10; notas do Pellegrini: seções 2.2 e 2.4).
  • Transformações lineares: definição e exemplos (Anton-Rorres: seção 8.1; Apostol: seção 2.1; notas do Pellegrini: início do Capítulo 3 precedendo a seção 3.1).
  • A matriz de uma transformação linear, matriz mudança de base, sistemas de equações lineares (Anton-Rorres: seções 8.4, 8.5, e 1.1 a 1.4; Apostol: seções 2.9 a 2.17; notas do Pellegrini: seções 4.1 a 4.3, 4.5, A.1 e A.2).
  • Matrizes escalonadas, método de eliminação de Gauss-Jordan (Anton-Rorres: seção 1.2; Apostol: seções 2.18 a 2.20; notas do Pellegrini: seções 4.4, 4.5 e A.1).
  • Núcleo e imagem de uma transformação linear, posto e nulidade de uma matriz, sistemas homogêneos (Anton-Rorres: seções 5.5, 5.6 e 1.2; Apostol: seções 2.2 a 2.4, e 2.17; notas do Pellegrini: seções 3.1, 3,2 e A.1).
  • Autovalores e autovetores: determinantes e polinômio característico, bases de autovetores, diagonalização de transformações lineares (Anton-Rorres: seções 2.1 a 2.4, 7.1, e 7.2; Apostol: seções 4.1 a 4.6; notas do Pellegrini: seções 5.2 a 5.6, e o Capítulo 6 até a seção 6.2 inclusive).